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Scattering in a two-dimensional photonic crystal: An analytical model
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An exact analysis of light propagation in a model two-dimensional photonic crystal is presented. The
system displays full and absolute band gaps in its dispersion characteristics. It is shown that global
propagation of s-polarized light derives largely from locally evanescent waves.
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In this Brief Report we present a two-dimensional
model of a periodic dielectric medium— a “photonic
crystal”’—from which physical quantities relating to
electromagnetic propagation are analytically available.
The model permits simple computation of the band struc-
ture, and displays full and absolute photonic band gaps.

Ever since the demonstration at microwave frequencies
by Yablonovitch and co-workers [1] of the existence of
the photonic band gap, many attempts have been made to
understand the underlying behavior of the electromagnet-
ic field in the presence of the periodic composite medium
giving rise to the phenomenon. These studies have em-
ployed numerical methods, save for the analysis of one-
dimensional periodicities, which can often be treated ex-
actly [2]. Numerical methods include k-space expansions
[3], transfer matrix techniques [4], and an electromagnet-
ic form of the Korringa-Kohn-Rostinger (KKR) method
[5].

The electronic analog of the two-component multilayer
system was first investigated by Kronig and Penney [6].
In this one-dimensionally periodic system scattering is
nondiffractive [7], and is thus analytically accessible.
Kronig and Penney also outlined a three-dimensional ver-
sion of this system that remained analytically tractable,
thanks to the separability of the Schrodinger equation
and the associated potential. Unfortunately, this separa-
bility does not automatically extend to the electromagnet-
ic field for the corresponding dielectric distribution.
Nevertheless, as we shall show, it is still possible to solve
analytically for a related nondiffractive system.

The model we shall investigate is one in which the
dielectric material consists of infinitesimally thick planes
of infinite dielectric constant. Thus, for definiteness, we
consider a dielectric slab of relative permittivity € and
thickness /, and define the dielectric parameter m such
that m =el. Accordingly, we allow € to go to infinity and
I to go to zero, while m remains finite and fixed. This
type of limit has been studied previously to model the
dielectric interface between a Fabry-Perot cavity medium
and the exterior to the cavity [8]. We assume a rectangu-
lar, two-dimensional periodicity such that the inhomo-
geneous relative dielectric constant takes the form
gr)=1+m| 3

nz——DO

S(X2_nza)+ 2 8(x3—-n3a) s

ny=—o

with r=(x,x,,x;) and where a is the spacing between
successive dielectric sheets. (The scalar counterpart to
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this system, for electrons, was alluded to in the original
work by Kronig and Penney [6]. A detailed exposition of
the three-dimensional version of their model has been
given in the thesis by Angus [9], and alternative
geometries were explored by Sutherland [7,10].) The sys-
tem can approximate a structure consisting of cylindrical
free-space voids in a dielectric material of infinite extent.

It can be shown from Maxwell’s equations that the
field discontinuities across each planar interface are given
by

- 9E
AH=—mesmX 3 (1)
AE=—mn(nXV)-(nXE), (2)

where AE and AH are the increments in the electric and
magnetic fields E and H, respectively. €, is the permit-
tivity of free space, and n is a unit vector, normal to the
interface, pointing in the direction of the field increment.
A free-space region is assumed on either side of the
dielectric plane.

In the following all fields oscillate with a time depen-
dence of e /!, and we consider only propagation within
the x,-x; plane. For this two-dimensional propagation
the fields decompose into s-polarized states (electric field
vector parallel to dielectric sheets) and p-polarized states
(magnetic field vector parallel to dielectric sheets).

For s-polarized light, we choose

k=0 (k}+ki=k>=w?/c?). 3)
The electric field is given by
E(r)=(E(r),0,0)

with E(r) expanded as
El(r)=(E(1,+i)e”‘2“2 +E(,,_2)e_ik2x2)

X(E(Re™ ™+ E(Je ") .
The corresponding magnetic field can then be found from
the Maxwell equation VXE=iwu,H, where p, is the
permeability of free space.

Application of the boundary conditions (1) and (2)
across the plane at x; =0 relates the field coefficients E{%’
(i =2,3) as follows:

Ts(k)E(a)zKE(b) , (4)

where E‘@ represents either of the vectors
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and the superscript (a) and (b) distinguishes the fields on
either side of the plane; the field labeled by (b) is defined
to be on the side into which n points. The matrices 7, (k)
and K are defined by

1

L= (1 bimk2/ky) (—1+imk?/ky)

and

p-polarized light is characterized in a similar way in
terms of the magnetic field, and results in the p-
polarization counterpart to T (k):

1 -1

T, (k)=

The boundary conditions above can also be carried over
to relating free-space fields separated by sheets in the
parallel x ;-x; planes.

Stable propagation through an infinite periodic medi-
um is characterized by the Bloch wave vector pu: Accord-
ing to Bloch’s theorem, fields separated by a lattice vector
R are related by

_ _ipR
Eﬂ(r—f—R)—e L Eﬂ(r) .

A similar relation applies to the magnetic field H(r).
Combining these with Eq. (4) and its magnetic field coun-
terpart, applied in both the x, and x; directions, we ob-
tain the consistency equations: for s polarization,

cos(u;a)=cos(k;a)—(mk?/2k;)sin(k;a) (i =2,3),

(5)
and for p polarization,
cos(u;a)=cos(k;a)—(mk; /2)sin(k;a) (i =2,3). (6)

Each of Egs. (5) and (6) for the wave vectors u; and k; is
identical in form to the dispersion relation for normal
propagation in a one-dimensional arrangement of dielec-
tric sheets distributed in the x; direction. The combina-
tion here, however, of the x, and x; components, togeth-
er with the free-space dispersion relation (3), gives rise to
complex dynamics peculiar to two-dimensional propaga-
tion.

With the local wave vector parametrized as
k=(0,sinf,cosf)w/c, constant-frequency  dispersion
curves for p-polarized light may be obtained from Egs.
(6). Figure 1 depicts a series of two-dimensional curves in
one quarter of the square Brillouin zone. The coordi-
nates of each point are (u,a /m,psa /), with 0 in the
range 0<0<w/2, and for m/2a =1. We may define
o' =wa /c, and label symmetry points and axes as shown
in the inset in Fig. 3. Figure 1(a) shows curves for ' in
the range 0-1.8. The initial low-frequency, long-
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wavelength behavior is apparent in the near-circular con-
tours. At higher frequencies, Bragg reflection begins to
take effect from o'=1.4. Beyond »’'=1.8 there are no
contours until @’ =3.2, the contours for which are shown
in Fig. 1(b); there is thus a complete band gap for p-
polarized light between »'=1.8 and 3.2. Figure 1(b)
displays contours of '’ from 3.2 to 3.8, above which the
next gap occurs. Equations (6) dictate that the constant-
frequency contours be symmetrical about the = line.
This implies that asymmetrical contours must exist with
a partner contour formed by reflection in 2. The two
contours cross on the diagonal and give rise to a degen-
erate mode in the = direction.

Figure 2 shows curves of constant frequency for s po-
larization, computed from Egs. (5). In this instance, how-
ever, scanning over the range 0<6</2 merely pro-
duces the solid curves which do not extend over all Bloch
wave-vector angles. In Egs. (5) it is seen that even for low
frequencies neither u,a /m nor psa /m vanishes when 6
takes the value O or 7w/2. This implies that Bloch wave
propagation can occur in directions oblique to the dielec-
tric planes even though the local wave vector k is parallel
to one set of planes. At this angle the singular behavior
of the s-polarization transfer matrix T, (k) as k, or k;
goes to zero may be traced to the vanishing of one com-
ponent of the tangential magnetic field. This is a purely
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FIG. 1. Constant-frequency contours for p-polarized light in
the positive quadrant of the square lattice Brillouin zone. Fre-
quencies shown on each contour are in units of c¢/a, and nor-
malized wave vectors in units of w/a. (a) Contours for the
lowest band. (b) Contours for the second band.
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geometrical effect, but has the consequence that the elec-
tric field must also vanish in this limit. The reason for
this follows from consideration of simple reflection into
free space from any dielectric planar interface. For s-
polarized light, the Fresnel equations predict a phase
change of 7 radians in the electric field upon reflection;
they also predict that the amplitude of the reflected wave
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FIG. 2. Constant-frequency contours for s-polarized light.
Units are as in Fig. 1. Solid lines denote that Bloch wave propa-
gation derives from propagating local modes, and dashed lines
signify evanescent local modes. (a) Contours for the lowest
band. (b) Contours for the second band. For this and the subse-
quent five bands Bloch wave propagation is due entirely to
evanescent local waves. (c) Contours for the eighth band. Both
evanescent and propagating local modes contribute to Bloch
waves.

BRIEF REPORTS 51

approaches that of the incident wave in the limit of
glancing incidence, at which point the two waves inter-
fere destructively.

We now consider evanescent local modes, for which the
local wave vector becomes imaginary. Specifically, we
take k3> w/c, and k, imaginary. The local vector k is
parametrized now as k=(0, isinha, cosha)w/c. This
procedure can be repeated, interchanging k, and k3. The
resulting curves are represented by the dashed lines in
Fig. 2. It is seen that real local wave propagation dies out
for frequencies above the band gap between o’'=1.3 and
1.6. Above this frequency, all global propagation for s-
polarized light occurs as a result of local evanescent
waves until the frequency »’=4.7, at which a locally
propagating mode appears, shown as the solid curve in
Fig. 2(c). The existence of evanescent modes signals the
presence of trapped (waveguide) modes within a high
dielectric region. Indeed, it is possible to show that an
isolated dielectric sheet can harbor a single trapped
mode—for s polarization only—with an external evanes-
cent field decaying over a length 2¢2/(mw?).

The dispersion curves are computed from Egs. (5) and
(6), upon setting u, and pu; to the appropriate value for
the given line, and solving the equation for 6. In princi-
ple this must be done for each value of @’. For the case
of p polarization, however, setting uj or uj to zero pro-
vides analytical dispersion expressions for all frequencies.
(These solutions correspond to more than just the values
0 or m/2 for O, that are associated with purely one-
dimensional periodicity.) Corresponding dispersion rela-
tions for both p- and s-polarized light are shown in Fig. 3.
The degeneracies noted above are apparent for both po-
larizations in the 3 direction. Nearly all s-polarization
bands derive from evanescent local waves: the band orig-
inating from propagating local waves, evident in Fig. 2(c),
appears between o’ of 4.6 and 4.8. Full (for all direction
in the plane) and absolute (for both polarizations) band
gaps occur around o' values of 2.2, 2.8, and 4.2 in the

wa/c

FIG. 3. Dispersion curves: s-polarization components (solid
lines) and p-polarization (dashed lines). Frequencies (ordinate
axis) are shown in units of ¢ /a. Symmetry points I', X, and M
in the Brillouin zone (inset) are at Bloch wave-vector (abscissa
axis) values of p=m/a times [0,0], [0,1], and [1,1], respective-
ly. The MT interval is scaled down by a factor of V2.
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figure. (The band edges can be analytically determined.)
It is also possible to show that in the long-wavelength
limit the s- and p-polarized components have effective re-
fractive indices of V'1+2m /a, and V'1+m /a, respec-
tively. Interestingly, these values correspond respectively
to the space-averaged permittivities of the two- and one-
dimensional periodic media.

Treatment of this simple model can be extended in
several ways: more general geometries, (e.g., triangular
or hexagonal) in which the field conforms to that of the
Bethe Ansatz [10,11]; propagation in three dimensions;
computation of densities of states. These issues will be
addressed in a future publication. In conclusion, the

model constitutes a useful analytical ‘laboratory” in
which to test the properties of more general photonic
crystals.
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